Extensions 1→N→G→Q→1 with N=C4⋊F5 and Q=C22

Direct product G=N×Q with N=C4⋊F5 and Q=C22
dρLabelID
C22×C4⋊F580C2^2xC4:F5320,1591

Semidirect products G=N:Q with N=C4⋊F5 and Q=C22
extensionφ:Q→Out NdρLabelID
C4⋊F51C22 = C2×D20⋊C4φ: C22/C2C2 ⊆ Out C4⋊F580C4:F5:1C2^2320,1104
C4⋊F52C22 = (D4×C10)⋊C4φ: C22/C2C2 ⊆ Out C4⋊F5408+C4:F5:2C2^2320,1105
C4⋊F53C22 = C2×D4×F5φ: C22/C2C2 ⊆ Out C4⋊F540C4:F5:3C2^2320,1595
C4⋊F54C22 = D10.C24φ: C22/C2C2 ⊆ Out C4⋊F5408+C4:F5:4C2^2320,1596
C4⋊F55C22 = C2×D10.C23φ: trivial image80C4:F5:5C2^2320,1592

Non-split extensions G=N.Q with N=C4⋊F5 and Q=C22
extensionφ:Q→Out NdρLabelID
C4⋊F5.1C22 = D8×F5φ: C22/C1C22 ⊆ Out C4⋊F5408+C4:F5.1C2^2320,1068
C4⋊F5.2C22 = D40⋊C4φ: C22/C1C22 ⊆ Out C4⋊F5408+C4:F5.2C2^2320,1069
C4⋊F5.3C22 = SD16×F5φ: C22/C1C22 ⊆ Out C4⋊F5408C4:F5.3C2^2320,1072
C4⋊F5.4C22 = SD16⋊F5φ: C22/C1C22 ⊆ Out C4⋊F5408C4:F5.4C2^2320,1073
C4⋊F5.5C22 = Q16×F5φ: C22/C1C22 ⊆ Out C4⋊F5808-C4:F5.5C2^2320,1076
C4⋊F5.6C22 = Dic20⋊C4φ: C22/C1C22 ⊆ Out C4⋊F5808-C4:F5.6C2^2320,1077
C4⋊F5.7C22 = C2×Q8⋊F5φ: C22/C2C2 ⊆ Out C4⋊F580C4:F5.7C2^2320,1119
C4⋊F5.8C22 = (C2×Q8)⋊4F5φ: C22/C2C2 ⊆ Out C4⋊F5808-C4:F5.8C2^2320,1120
C4⋊F5.9C22 = C4○D4⋊F5φ: C22/C2C2 ⊆ Out C4⋊F5408C4:F5.9C2^2320,1131
C4⋊F5.10C22 = C4○D20⋊C4φ: C22/C2C2 ⊆ Out C4⋊F5808C4:F5.10C2^2320,1132
C4⋊F5.11C22 = C2×Q8×F5φ: C22/C2C2 ⊆ Out C4⋊F580C4:F5.11C2^2320,1599
C4⋊F5.12C22 = D5.2- 1+4φ: C22/C2C2 ⊆ Out C4⋊F5808-C4:F5.12C2^2320,1600
C4⋊F5.13C22 = C4○D4×F5φ: C22/C2C2 ⊆ Out C4⋊F5408C4:F5.13C2^2320,1603
C4⋊F5.14C22 = D5.2+ 1+4φ: C22/C2C2 ⊆ Out C4⋊F5408C4:F5.14C2^2320,1604
C4⋊F5.15C22 = C2×C40⋊C4φ: C22/C2C2 ⊆ Out C4⋊F580C4:F5.15C2^2320,1057
C4⋊F5.16C22 = C2×D5.D8φ: C22/C2C2 ⊆ Out C4⋊F580C4:F5.16C2^2320,1058
C4⋊F5.17C22 = (C2×C8)⋊6F5φ: C22/C2C2 ⊆ Out C4⋊F5804C4:F5.17C2^2320,1059
C4⋊F5.18C22 = M4(2)⋊1F5φ: C22/C2C2 ⊆ Out C4⋊F5408C4:F5.18C2^2320,1065

׿
×
𝔽